Strict Standards: Declaration of SkinByB::initPage() should be compatible with Skin::initPage(OutputPage $out) in D:\inetpub\wwwroot\es.wiki.backyardbrains.com\skins\byb.php on line 24
Experimento: Midiendo Velocidad Neuronal - Backyard Brains
Backyard Brains Logo

¡Neurociencia para Todos!

+1 (855) GET-SPIKES (855-438-7745)


productos ()

Experimento: Midiendo Velocidad Neuronal

Revisión a fecha de 23:48 6 ago 2012; Timothy (Discusión | contribuciones)
(dif) ← Revisión anterior | Revisión actual (dif) | Revisión siguiente → (dif)

Antecedentes

Hasta este punto hemos estado estudiando espigas emitidas por grillos y cucarachas, principalmente monitoreando la “tasa de espigas” y la “presencia de espigas”, en respuesta a ciertos estímulos o condiciones. Ahora vamos a estudiar "la velocidad de la espiga."

Probablemente creas que el sistema nervioso es muy rápido. Pareciera que escucharas las espigas inmediatamente al tocar la pata de una cucaracha o al soplar sobre el cerco de los grillos. Pero, ¿es instantáneo? ¡Por supuesto que no! Ni siquiera la luz, la señal más rápida en el universo, viaja instantáneamente. Entonces, ¿qué tan rápido es un sistema nervioso? ¿Es más rápido que un auto, más rápido que un avión, o más rápido que un teléfono celular? Y, ¿cómo podemos medirlo?

Exp11 fig1.jpg

En todos los experimentos anteriores, sólo hemos registrado neuronas usando un canal (es decir, usamos solo un electrodo de registro, y uno de tierra). Sin embargo, para medir la velocidad debes medir tanto el tiempo (cuando se generó la espiga) como la distancia (la distancia que ha recorrido la espiga a través del nervio).

Hagamos una analogía con un auto en una carretera. Si estuvieras mirando desde un pequeño puesto de observación podrías determinar si viste un auto, qué tipo de auto era, y la hora a la que lo viste .

Exp11Fig2 camino.jpg

Lo mismo ocurre con el SpikerBox, puedes decir si viste una espiga, tal vez qué tipo de neurona generó esa espiga (vamos a discutir esto en un experimento posterior), y la hora de la espiga, pero no puedes determinar la velocidad de la espiga viajando por el nervio.

Volvamos al auto en la carretera. Imagina que tuvieras un amigo ½ milla más allá en la carretera en un puesto similar: Después de la observación, podrían compartir su información y determinar la velocidad del auto.

Exp11Fig3 camino small.jpg

1 minuto = 0,016 horas. Divide ½ milla por 0.016 horas, y calcularías una velocidad de 31.25 mph. Por lo tanto, podemos medir la velocidad con dos observadores, y es por eso que anunciamos el “SpikerBox de dos canales” para medir 2 puntos a lo largo de un nervio mientras una espiga viaja a través de él.

Exp11fig5 chanellspikerbox.jpg

Así que, ¿por qué no nos tomamos nuestro SpikerBox de dos canales con nuestros dos electrodos y la tierra, los colocamos en la cucaracha, y medimos la información de las espigas por dos canales? Inmediatamente notarás que hay una gran cantidad de espigas ocurriendo en ambos canales; de hecho, demasiadas como para seguirlas a todas.

Volvamos a la analogía de la carretera. Imagina una calle muy transitada, por muchos autos similares a una velocidad bastante alta (como la Costanera, por ejemplo) y tu amigo y tú solo pueden establecer puntos de observación muy cerca uno del otro.

Exp11Fig2 honda.jpg

Ya puedes ver el problema, hay una gran cantidad de espigas generándose en la pata dela cucaracha, e identificar alguna en particular es muy difícil. El fémur de la pata de la cucaracha tiene 2 nervios en su interior, y unas 100-200 neuronas dentro de cada nervio, todas disparando muchas espigas. Nosotros también estamos limitados por la distancia que podemos tener entre nuestros electrodos, ya que la pata tiene sólo 8 mm de largo, aproximadamente.

Lo ideal sería que, dadas nuestras limitadas herramientas, midiéramos espigas en un nervio más largo, un nervio, con sólo 1-3 axones, ojalá grandes, y que estos axones no disparen muchas espigas.

¿Existirá alguna criatura en el reino animal que cumpla con estos requisitos? ¡Claro que sí! y es probable que en estos momentos esté bajo tus pies y en tu patio trasero.

Exp11gif7 earthworm.jpg


Hemos estado estudiando artrópodos (insectos), pero ahora pasaremos a una nueva clase de invertebrados: ¡Los anélidos! O como son usualmente llamados, ¡gusanos! Te presentamos nuestra nueva preparación: la lombriz de tierra común, "Lumbricus terristrius". IEs un animal más simple que los que hemos estudiado antes, y la lombriz de tierra contiene tres grandes axones que recorren la longitud de su cuerpo, la “fibra gigante medial” y las dos “fibras gigantes laterales ". La fibra gigante medial transmite información sobre la parte frontal del gusano (la parte más cercana al clitelo), y las fibras gigantes laterales transmiten información de las células de la piel del extremo posterior del gusano (Kladt et. al 2010)

Exp11fig8 cross.jpg

Además de la gran longitud de la lombriz, que nos permite colocar los electrodos más separados, la lombriz de tierra también exhibe lo que se conoce como

Exp11fig9 sparsecoding.jpg

¿Qué es la codificación dispersa? Volvamos a la cucaracha y la "codificación de tasa" que estudiamos antes. Para la tasa de codificación, la intensidad de un estímulo es codificado por la tasa de espigas. Si la pata de la cucaracha utilizara un esquema de codificación dispersa, los nervios de la pata sólo dispararían 1-2 veces al tocar la púa con un mondadientes, y 1-2 veces más al quitarlo.

Exp11Fig10 sparsevsrate.jpg

Este esquema de codificación dispersa es lo que veremos en el experimento de la lombriz de tierra a continuación, y lo aprovecharemos para medir la velocidad de conducción de las espigas. Aquí hay un video que describe el experimento:


Procedimientos

Para este experimento necesitarás:

  1. SpikerBox de 2 Canales
  2. Lombriz de Tierra
  3. Una jaula de Faraday
  4. Computador portátil con entrada estéreo
  5. Cable de audio/Cable para computador portátil
  6. Regla
  7. Madera (Balso) para el Gusano
Exp11fig6 earthworm.jpg

Y las instrucciones:

  1. Compra una caja de lombrices de tierra en tu tienda de mascota o tienda de artículos deportivos más cercana (normalmente se usan para alimentar a lagartos, tortugas y peces. Los pescadores las utilizan como cebo). Cuando no la estés usando, guarda la caja en el refrigerador (no en el congelador). Los gusanos pueden durar 1-2 meses aproximadamente.
  2. Prepara una solución de etanol al 10%. La forma más sencilla de hacerlo es utilizar vodka (que normalmente tiene un 40% de etanol). Como el vodka no es mucho más que etanol puro diluído, dilúyelo un poco más: 1 parte de vodka, 3 partes de agua. Por ejemplo, mezcla 10 mL de alcohol con 30 mL de agua potable. Pídele a tu profesor que prepare esta solución.
  3. Coloca una lombriz de tierra sana en la mezcla de alcohol y espera siete minutos. No espere demasiado tiempo, ya que al igual que con la anestesia para humanos, El balance entre muy poca o demasiada anestesia es muy difícil de encontrar. Muy poca anestesia significará que la lombriz de tierra se moverá durante el experimento, y la actividad eléctrica muscular resultante (electromiografía) va a ahogar las (pequeñas) señales eléctricas neuronales que te interesan. Si es mucha anestesia y los nervios no dispararán. Hemos determinado que 7-10 minutos es un buen rango.
  4. Coloca la lombriz de tierra en un pedazo de madera de balso o de corcho grueso, y coloca los tres electrodos de tu SpikerBox de 2 canales en el extremo posterior del gusano (ver la ilustración de arriba).
  5. Coloca una Jaula de Faraday alrededor de la lombriz de tierra, y conecta la jaula a tierra por el canal 1 o el canal 2 del SpikerBox.
  6. Enciende tu SpikerBox de 2 canales, conecta el cable de conexión (patch) portátil tanto al SpikerBox de 2 canales como a tu computador portátil, y abre Audacity. Asegúrate que la entrada de tu computador portátil sea capaz de grabar dos canales.
  7. Configura el "dispositivo de grabación" en la pestaña Audio I/O de las preferencias de Audacity a “Input Asignado” como entrada y “Canales” to "Estéreo". Asegúrate que la salida esté configurada a “Output Asignado”, y también marca las casillas “Reproducción a través del Hardware” y “Reproducción a través del Software” para que puedas escuchar las espigas mientras grabas.
  8. Presiona el botón de Grabación en Audacity. Debieras oír algo de ruido de fondo, y ahora, con un mondadientes, toca el extremo anterior (trasero) de la lombriz. Debieras escuchar 1-2 "estallidos" leves. Esos son las espigas. Es interesante que las neuronas en la lombriz tienen una vaina de mielina (una cubierta de grasa aislante), y puedes notar que las espigas son mucho más suaves que lo usual.(Hartline & Coleman 2007). Muchas enfermedades nerviosas, como la Esclerosis Múltiple, son causadas por la degeneración de esta cubierta de grasa.
  9. Detén la grabación. Ahora, revisa tu archivo de grabación y trata de encontrar tus espigas. Tendrás que ampliar varias veces la señal, para "estirarla" lo suficiente como para tomar una medida. Debieras ver el comienzo de las espigas separadas en el tiempo.
  10. Usando el eje-tiempo para medir el tiempo, determina qué tan separados en el tiempo se encuentran los inicios de las espigas (ver ilustración abajo).
  11. Utilizando una regla milimétrica, mide la distancia entre el electrodo 1 y el electrodo 2.
  12. Divide la distancia en el tiempo. Voilà! Acabas de medir la velocidad de conducción.
Exp11Fig11 spiketiming.jpg

Ahora empieza a explorar. Por ejemplo, ¿cambia la medición entre espiga y espiga? ¿Y entre lombrices? Las lombrices más pequeñas, ¿son más rápidas o más lentas que las grandes? La velocidad, ¿es sensible al grado de anestesia? Nos gustaría saber la respuesta a todas estas preguntas, y a ti también, Así que cuéntanos tus descubrimientos. Para ayudarte a aprender a identificar espigas de lombrices de tierra, Aquí está el registro de audio de la lombriz del vídeo de arriba.

Solución de problemas

1 – Si la lombriz de tierra no está sana (no se mueve en la caja, no se resiste/retuerce al intentar tomarla), no obtendrás buenas grabaciones.

2 – Por razones que no entendemos, la lombriz de tierra es una excelente antena para el ruido eléctrico. A menos que estés haciendo tu experimento afuera, necesitas usar una Jaula de Faraday para que este experimento funcione.

3 – También es necesario un computador portátil con una entrada de sonido estéreo. La mayoría de los computadores tienen una, pero algunos equipos, como el MacBook Air y los pirmeros MacBook Pro, no tienen. La única forma de saberlo (aparte de llamar al diseñador) es correr una prueba. Si no tienes una entrada estéreo, puedes usar una mesa de mezclas USB para obtener entradas analógicas estéreo en el computador. En estos momentos estamos realizando pruebas en varios various mezcladores USB (por lo general entre $ 100 - $ 200) e informaremos brevemente.

Preguntas de Discusión

1. ¿Por qué estamos usando alcohol para anestesiar a la lombriz de tierra en lugar de agua con hielo?

2. ¿Qué sucede si se invierte la tierra y el electrodo de registro 1?

3. ¿Qué sucede si tocas la parte anterior del gusano (la boca)?

4. ¿Cuáles son las ventajas y desventajas de la codificación dispersa frente a la codificación de frecuencia?